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AllSTRACT

A untflecl theory of the linear stability of the Roberts and l’nylor type

r)f registivc Interchnrge and ballooning fa presented. The sffects of both

parallel and perperwiicular viscosity as well as of ~~nitc mhwar and finite B

nre included in a MHll trentment of the problem. Kjnctlc effects arc alsc

stllrilcd. l%t~ “hybrid klncttc” model with VlnHoV ions and guidin~ center
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s 31ve the equation~ when all of the varioua effects of interest are

simultaneously present.

I. Model: Using re~istive WID theory with an misotropic pressure tensor

the resistive Interchange wtth parallel wnvcnumhcr kg - fl and its special

form, the ballooning mode, w~th kfl - l/L are derived as limits ~f a single

model. Advantage is taken of the s~mplicity of the magnetized plnne slab

gcnmctry to nimultanenualy !3turiy the effects of both parallel and

perpendicular vi.acofil.ty, finite shear and finite beta. Magnetic curvature

cfFccts are simulated by a ~ravitatinnnl. acceleratlonl

(1)

(:’)
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For the same simple geometry the effect of finite Larmor radius on

resistive interchanges is also studied. For this purpose the “hybrid kinetic”

electrons is appropriatelymodel with Vlasov ions and guiding center

generalized to include electron-ion collisions.

11. Rcststive MID): We employ Maxwell’a equations along with the usual

resistive M’NDset:

dg
~ “ S(- 130vp + .~xg) + 2pC& - Uv”g

al + v*vp +ypv~y = o,
at -

~+y”~g-J

(3)

(4)

II . vv/vh ~ ;. [{os ()-1, (] .: 1{(, V;,,hrvv,lll llL/llMP Vv - ll~/nP,)
. .
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f(l) = f(dx, z) exp[iK(B$O)z - B$”)y) + ut] (6)

with 6<<1, K>>l. Using Eq. (6), operating with ~x=VXVX on Eq. (3) we derive

the equation of motion perpendicular to the line of force

(7)

(H)



.
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A. Stationary Nodcs;m=O: A critical pressure gradient is obtained for the

onset of ballooning (l.Il = O):

Pnrallel viscosity is seen to be responsible for the existence of a threshold

which is nGt possible when resistivity is the only source of dinaipation. The

shnpe of the mode at marginality has also been obtained and it would be useful

in the context of a quanilinear transport theory.

B. Crowing Modes; wtfl:

a. No Shear; ~=~: This is appropriate for devi,:es— like Field Reversed

Theta Pinches and mult{pol.ca particularly in view of the fact that our

treatment in v~lid for finite beta- Wc define

+phi-s (F’lff’)) - Fj;/(,, - N;) - s-l i + ()(s-~) ● (())
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Ld - 2;(%; - ~)/(Ml B$o)2~2) + ()(s-1), (11)

(for ML~2 >> 0).

29 i >> 1.: For this case, the dispersion relation becomes a quintic

in ;. Simple formulae are not very accurate. Using MACSYMAonly two of the

roots are found to be growing. Large perpendicular viscosity combined with

small parallel viscosity can stabilize a resistive ballooning-like root fnr

high and an ideal ballooning-like root for intermediate K.

In Renernl BR la found to hc effective In stabilizing these modes for

a
very nmal 1 Value c of u, viz. Sec. 2,

destablltzlng. I.ll is filwnyg stahil.iztng and

however, for larger ~ It is

becomes mast effective as K + -.

devices (Revcrwd FLelcl Pinch), hut nlso for tokamak~ with 6~’r penkud

current. profiles. We obtain RimplG nnal,ytl.c results using thu “digconnectcd

moclc npproxfmatLon1f5 mid wc mnkc Llae of an cxpnnHiOn in terms of Ilcrmitc

functtnn~ LO trent the ~enernl prohlcrn.

1. NeRioctLnR pnrnllcl [nortLn nnd c.lcctrmn:lfinotic effrctH wc find (for

IJ; - 0)

(1+4))t; - I . .---. --A + . . forA << 1,
( ‘I+j )
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whnre the tilde denotes normalization to u ~, the growth rate for the “twisted

Blicing mocle”3 (~ti * 0).

The first of Eq. (12) represents the C-mode limit , while the second is ihe

ballooning limit.

2. Letting PL # 0 and using the same approximation as above as well as

an expansion in terms of Hermite functions. we derive a secular infinite

matrix determinant for the problem. U91ng just the first Lerm of this

determinant we find very roughly (as L + =)

prcdictlnfi n cutnfF K. Letting, for instance. Ml - 10-3, S - iOb we find

Kcutoff - 2f) (;/:)1’2.

3. Util.izfnR the oxpan~lon in terms of Hermite functions, the general

Hystt!rl or l?qs. (M) and (9) 1.s solved also. .::llcce~sivc disconnected mde

.lpprrixfm:ltlon~ arc performed for cnlculatlng the Cigcnfunctionn. The

p:lrtlcul.nr Itrrat.1.vc srhomc lnvolvwl dlspl.ny.q fnnt convcr~cncc. Growth rntes

nru Fo~md to hc firontly supprcssml WIth rc:?pl~ct to the H = O cane.
.
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neceaaary in order to take into account the finiteneaa of the ion orbits and

the electrostatic nature of ion confinement. Such a treatment is important to

high cemperaturc and high S regimes, which would be obtainable near or at

reactor conditions. Here we let rLi denote the thermal ion Larmor radius and

we assume krLi - O(l). We consider collisionleas ions in static equilibrium.

They are cr,aracterized by an equl.ltbrium distribution f~”), which only depends

on the ion Hamlltonian H. It includes a gravitational poter,tial according to

Eq. (l). Resi~tivity is assumed to be entirely due to colliatons between

electrons and ions. tiesistive effect6 ❑anifest themselves only thrmqqh the

generalized ohm’s law. On the other hand Rravity only affects the momentum

balance equation. We note that for our treatment to be ccirrect we must have

(13)rl.~1 ‘l/vr >> 1 ●

Given Eq. (13), we can generalize the recently developed hybrid-kinetic

formalism of Ref. (2) to Inrludc constant re91stivfty and firavitnttofi. We

llne~rize the ion and electron kinetic equations assumln,q maRnetlcally

conflncd electrons (Iul c< Uce, rLc << n) but elcctro~tatical~y confined ions

(IQI : foci, rL1/a finite). Ilerc w= denotes cycl,otrnn Frequc!nctes nnd tho

suhscript~ i, e refer to the Ionu and electrons rcspuctively. The ctmflnln~

(1/,)

(v. t.rnlll. (’

I l:ill>llil:
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processes needed in the presence of finite electrrn pressure are approximated

by a BRK model.6

We hnse our

a. The ion

b. GuidinR

analysis on the fGllowing equations.

Vlasov equation, unexpanded.

cfanter electrons with G RG~ collision te~.

c. The parallel component of Ohm’s law along with

We stress, however, that the present formalism is

the specific electron model, which can equally well be

massles9, finite pressure resistive fluid.

Faraday’s law.

quite insensitive to

chosen to be that cf a

Linearizing, we obtain a system of coupled eigenvalue equations from

momentum balance

?(1) +Vlx . 1v* x [(vx~~l) x p) + (Vxlp) x p] - VLX - ~) (15)

~) (l:-
af~o)

where ue/d3y(~(0) + ~~(o)) — an
IS the gt!nr:alized inertial fnrcc dennity nnti

aft(o)

~1) A mi~(pcn +~l*Vp~o))N-l Jc13v ~1, !?

I.H n known function OF (~ - ~(”) ~(”))-~c Frnm Ohm’s lnw WP have

[h, - “:.vl,,, ”(d -V:ov) [llP) =1,,, - & - ~(A(l) .VXI(~)/lIfn) +il(n).vxn(t~j (16)

llorl~ wu ll:Iv(~ IIHIJd tlIII }::1111:0

+(1) H p,, ti/,*N + d&~(l’ , (17)
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assuming I@(m) * O, and we have defined the mathematical variable ~ Win

In additton, we employ

(18)

. (19)

Y is seen to be an integral over the equilibrium ion orbits

dy
__m&(E(0)+WB(O))+g .
dt ‘i - ‘“-

$(1) is the perturbed electrostatic potential.

In deriving Rqs. (15) and (16), no at39umptiona were made concerning

magnetic shear hut terms of O(gz, ~R) have been dropped.

As n simple example we consider the case of smnLl shear, yFj(o)/B(o) ~ ~,

and ne~lL~lble temperature ratio Te/Ti. Here E~ - rLi41a/ax lnl{llh << 1.

Then to leading order in C2 wc havc7

(2(-))
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13(1)= vx(~lxg (o)) + ~ ~2rJ(l)
u+ikov -. -e

where we assumed Ka >> 1. ~oi~aresonant integral’ only depending on El

for !UldVr >> 1, and ~E Is the cross-field drift velocity.

It is seen from Fq. (2n) that a leadin~ order resonance OCCU”-S due to the

effect of gravity. If we arbitrarily neglect it then Eqs. (20) and (21) can

be solved using standard methods of resistive MHD.

4.

1.

2.

3.

4.
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